If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x+x^2=3000
We move all terms to the left:
8x+x^2-(3000)=0
a = 1; b = 8; c = -3000;
Δ = b2-4ac
Δ = 82-4·1·(-3000)
Δ = 12064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12064}=\sqrt{16*754}=\sqrt{16}*\sqrt{754}=4\sqrt{754}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{754}}{2*1}=\frac{-8-4\sqrt{754}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{754}}{2*1}=\frac{-8+4\sqrt{754}}{2} $
| 2n+23=3n+22 | | 4x+0,1x+0,3x=959 | | 4010+39100x=30*27 | | 8+4=2(x-1 | | 70+50+70+x=180 | | 83+3x/4=90 | | 4819x-292999=839100+x*x | | 8n+10=10n | | 60+60+5x=180 | | 12=30*x/360 | | 2/5(1/2y+5)−4/5=1/2y−1+1/10y | | 49x+36=7x | | 4320/x=30 | | 25(12y+5)−45=12y−1+110y | | 16.50r=49.50 | | 50x=560 | | 3x-2(6-x)=7x+2(5+x-)6 | | -x+10=2x+1 | | x+83+65+40=180 | | 83+3x=90 | | 7v/4=21 | | 12-2x=2x-3 | | -10x-20=+8-15 | | 6n+10=6n+10 | | -10x-20=+8-13 | | 3x+2=-6x-70 | | -3=2/5a+7 | | 20-6y=12+2y | | -x*2=100 | | 22x+10=15x+25 | | 2511=31(p+30) | | -x2=100 |